If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/n^2=729
We move all terms to the left:
3/n^2-(729)=0
Domain of the equation: n^2!=0We multiply all the terms by the denominator
n^2!=0/
n^2!=√0
n!=0
n∈R
-729*n^2+3=0
We add all the numbers together, and all the variables
-729n^2+3=0
a = -729; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-729)·3
Δ = 8748
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8748}=\sqrt{2916*3}=\sqrt{2916}*\sqrt{3}=54\sqrt{3}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-54\sqrt{3}}{2*-729}=\frac{0-54\sqrt{3}}{-1458} =-\frac{54\sqrt{3}}{-1458} =-\frac{\sqrt{3}}{-27} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+54\sqrt{3}}{2*-729}=\frac{0+54\sqrt{3}}{-1458} =\frac{54\sqrt{3}}{-1458} =\frac{\sqrt{3}}{-27} $
| 7(y-4)=-9y-44 | | -3.8t+40=4.4t-37 | | 8(x+3)+7=-25 | | 2w+48=7(w+9) | | 4x+6/5=3x | | (2÷3)=(x÷106) | | -4(3-4y)=8y+44 | | 2(v-8)+5v=-30 | | 18n^2-27n-72=0 | | 11x+12-10=370 | | -1=x+11 | | 0.4x-0.5=0.3x+8 | | 2/3=x/106 | | |1.2-0.7x|=2 | | -5t^2+18t+1.8=18 | | 2(u+7)-8u=32 | | 50x+5x^2=7x | | 5n+12=-18 | | Y=x2+7 | | 3/x-4/x=3/2 | | V=x(45-2x)(60-2x) | | 1/2(3t+4)=1/3(4t+1) | | 0.48=b/5 | | 8=53-4y+y^2 | | 3X^3+6x^2-288=0 | | x3x8=16 | | Y=x3 | | -2u+2=-7u+7 | | 7k^2+77k+168=0 | | 9y+3y=6y+15 | | 5x+21(x-3)=223 | | 6x^2-54x+130=0 |